Nano-Diamond Ink Formulation with Strong Photoluminescence Properties

Igor Chernikov, Boris Zoussman, Mohammed AlAraimi, Raz Arif, Petro Lutsyk, Olga Levinson, Aleksey Rozhin

1. Nanoscience Research Group and Aston Institute of Photonic Technologies, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B47ET, UK
2. Ray Techniques LTD, P.O.B. 39162, Jerusalem, 9139101, Israel
3. Engineering Department, Al Musanna College of Technology, Muladdah Musanna, Sultanate of Oman
4. Physics Department, Faculty of Science, University of Sulaimani, P.O.B. 334, Sulaimani, Iraq

ABSTRACT

Nano-diamond (ND) is material having unique surface, thermal and optical properties promising for application in high-power electronics, pharmacy, etc. In this report, we develop a nano-diamond ink, which can be printed in micro array applicable for anti-microbial and bio-sensor applications.

Firstly, nano-diamond was synthesized via laser ablation process. Next, the ND was dispersed in N-Methyl 2-Pirrolydone (NMP) solvent with a mass concentration equal 5%. Then, we diluted the ND dispersion in NMP with pure NMP at 50:50 ratio in order to formulate the nano-diamond ink. The obtained dispersion was subjected sonication (Nanoruptor, Diagenode SA) at 20kHz, 250 W for 1 hour with following ultra-centrifugation (Beckman Optima Max-XP, MLS-50 rotor) at 25000 RPM for 2 hours. Finally, the resulting dispersion was filtered through a 0.7-micron glass fiber filter in order to remove remaining sediment.

Then, ND-ink characterized by optical absorption and photoluminescence (PL) excitation-emission spectroscopy. The excitation wavelength was changed with an increment of 5nm in the spectral range of 350-600 nm. The PL map shows the strongest PL with a maximum at 630 nm when ND dispersion is excited at 450 nm.

We printed ND dispersion using auto-drop ink-jet system (Micro-drop GmbH) and a perfectly separated array of nano-diamond points having a size of approximately 100um, and with a final separation distance of 100um, allowed for a homogenous layer to be obtained. The array further characterized by micro-Raman, Absorption and PL spectroscopy. The printable ND array show a great promise for fluorescence imaging and bio-sensing applications.